login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068425 a(n) = floor(2^n*Pi). 9
1, 3, 6, 12, 25, 50, 100, 201, 402, 804, 1608, 3216, 6433, 12867, 25735, 51471, 102943, 205887, 411774, 823549, 1647099, 3294198, 6588397, 13176794, 26353589, 52707178, 105414357, 210828714, 421657428, 843314856, 1686629713 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

COMMENTS

In other words, take the binary expansion of Pi, drop the decimal point and interpret the first n+2 bits as an integer.

Dubickas proves that infinitely many terms of this sequence are divisible by 2 or 3 (and hence infinitely many composites). - Charles R Greathouse IV, Feb 04 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = -1..3300

Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.

EXAMPLE

The binary expansion of Pi (A004601) begins 1, 1. 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, ... so we get 1, 3, 6, 12, 25, 50, ...

MATHEMATICA

Table[Floor[2^n*Pi], {n, -1, 100}] (* G. C. Greubel, Mar 23 2018 *)

PROG

(PARI) a(n)=floor(Pi<<n) \\ Charles R Greathouse IV, Feb 04 2016

(MAGMA) R:= RealField(); [Floor(2^n*Pi(R)): n in [-1..100]]; // G. C. Greubel, Mar 23 2018

CROSSREFS

Cf. A004601, A117721 (primes).

Sequence in context: A278666 A007239 A088970 * A136444 A077854 A265700

Adjacent sequences:  A068422 A068423 A068424 * A068426 A068427 A068428

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Mar 09 2002

EXTENSIONS

Revised by N. J. A. Sloane (and offset changed), Jul 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 23:46 EST 2018. Contains 318245 sequences. (Running on oeis4.)