

A068353


Decimal expansion of smallest positive root of cos(Pi x/2) cosh(Pi x/2) = 1.


0



1, 1, 9, 3, 7, 2, 8, 3, 2, 5, 3, 8, 8, 9, 3, 4, 3, 2, 3, 4, 3, 8, 8, 0, 9, 2, 3, 4, 7, 6, 0, 3, 2, 9, 0, 1, 6, 9, 9, 4, 3, 0, 3, 3, 9, 9, 3, 6, 5, 8, 9, 7, 9, 6, 0, 8, 1, 6, 4, 9, 7, 2, 5, 6, 3, 4, 8, 2, 6, 2, 2, 3, 5, 4, 7, 5, 7, 2, 2, 6, 8, 1, 3, 7, 2, 0, 5, 3, 0, 7, 1, 0, 9, 1, 5, 1, 4, 4, 2, 0, 9, 8, 8, 7, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The root is x = 1.1937283253889343234388...


REFERENCES

Harrington, E. A. (1928). The vibrations of tuningforks. JOSA, 17, 224237.
Keulegan, G. H. (1928). On the vibration of U bars (Doctoral dissertation, Johns Hopkins University).
Liebetrau, A. M. (1979). Some tests of randomness based upon the variancetime curve of the Poisson process. Journal of the Royal Statistical Society. Series B (Methodological), 41, 3239.


LINKS

Table of n, a(n) for n=1..105.


MATHEMATICA

RealDigits[FindRoot[Cos[Pi x/2]Cosh[Pi x/2]==1, {x, 1}, WorkingPrecision>200][[1, 2]]][[1]]


PROG

(PARI) solve(x=1, 2, cos(x)*cosh(x)+1)*2/Pi \\ Charles R Greathouse IV, Apr 16 2014


CROSSREFS

Equals (2/Pi) times A076417.
Sequence in context: A011390 A011229 A324993 * A136251 A073002 A197836
Adjacent sequences: A068350 A068351 A068352 * A068354 A068355 A068356


KEYWORD

nonn,cons


AUTHOR

Joost de Winter, Feb 28 2002


EXTENSIONS

Edited by Dean Hickerson, Jun 07 2002
Offset corrected by R. J. Mathar, Feb 05 2009


STATUS

approved



