login
A068348
Number of partitions of A066926(n) into x_i parts.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 6, 2, 3, 9, 1, 2, 8, 5, 3, 6, 7, 8, 71, 1, 5, 4, 55, 4, 4, 4, 33, 3, 81, 1, 295, 42, 3, 5, 2, 4, 101, 122, 21, 11, 4, 5, 1442, 3, 457, 8, 89, 164, 6, 1, 526, 3, 676, 1, 7, 4, 333, 1, 1, 85, 1, 91, 139, 2504, 17, 4, 2, 50
OFFSET
1,9
LINKS
EXAMPLE
a(9) = 2 because 36 = 6+6+6+6+6+6 = 3+3+6+12+12 has two partitions into a set of x_i.
a(10) = 3 because 40 = 4+4+8+8+8+8 = 4+5+5+8+8+10 = 5+5+5+5+10+10 has three partitions of that kind. - R. J. Mathar, Jul 12 2013
MAPLE
A068348 := proc(n)
local a, p, xi, rep ;
a := 0 ;
for p in combinat[partition](n) do
rep := true ;
for xi in p do
if not type(n/xi, 'integer') then
rep := false;
end if;
end do:
if rep then
q := n*add(1/xi, xi=p) ;
if q =n then
a := a+1 ;
end if;
end if;
end do:
a ;
end proc:
for n from 1 do
isA068348 := A068348(n) ;
if isA068348 > 0 then
print(isA068348) ;
end if:
end do: # R. J. Mathar, Jul 12 2013
CROSSREFS
Sequence in context: A182933 A342673 A365463 * A308290 A204167 A217897
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Feb 28 2002
EXTENSIONS
a(18)-a(74) from Giovanni Resta, Feb 23 2014
STATUS
approved