login
A068324
Number of nondecreasing arithmetic progressions of positive odd integers with sum n.
4
1, 1, 2, 2, 2, 3, 2, 3, 4, 4, 2, 5, 2, 5, 6, 6, 2, 7, 2, 7, 7, 7, 2, 9, 4, 8, 8, 10, 2, 11, 2, 10, 9, 10, 5, 14, 2, 11, 10, 14, 2, 14, 2, 14, 15, 13, 2, 17, 4, 15, 12, 17, 2, 17, 6, 18, 13, 16, 2, 22, 2, 17, 17, 21, 7, 21, 2, 21, 15, 21, 2, 25, 2, 20, 21, 24, 5, 24, 2, 26, 19, 22, 2, 29, 8
OFFSET
1,3
LINKS
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
From Petros Hadjicostas, Oct 01 2019: (Start)
a(n) = A068322(n) + A001227(n) - (1/2) * (1 - (-1)^n).
G.f.: x/(1 - x^2) + Sum_{m >= 2} x^m/((1 - x^(2*m)) * (1 - x^(m*(m-1))).
(End)
EXAMPLE
From Petros Hadjicostas, Sep 29 2019: (Start)
a(6) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=6: 1+5, 3+3, and 1+1+1+1+1+1.
a(7) = 2 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=7: 7 and 1+1+1+1+1+1+1.
a(8) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=8: 1+7, 3+5, and 1+1+1+1+1+1+1+1.
(End)
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 27 2002
EXTENSIONS
Extended and edited by John W. Layman, Mar 15 2002
STATUS
approved