

A068229


Primes congruent to 7 (mod 12).


29



7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 331, 367, 379, 439, 463, 487, 499, 523, 547, 571, 607, 619, 631, 643, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967, 991, 1039, 1051, 1063, 1087, 1123, 1171, 1231
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes of the form 3x^2 + 4y^2.  T. D. Noe, May 08 2005
It appears that all terms starting from term 103 are primes which are the sum of 5 positive (n > 0) different squares in more than one way (A193143)  Vladimir Joseph Stephan Orlovsky, Jul 16 2011.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


MATHEMATICA

Select[Prime/@Range[250], Mod[#, 12] == 7 &]


PROG

(PARI) for(i=1, 250, if(prime(i)%12==7, print(prime(i))))
(MAGMA) [ p: p in PrimesUpTo(1400)  p mod 12 in {7} ]; // Vincenzo Librandi, Jul 14 2012
(PARI) is_A068229(n)={n%12==7 && isprime(n)} \\ then, e.g.,
select(is_A068229, primes(250)) \\  M. F. Hasler, Jan 25 2013


CROSSREFS

Cf. A068227, A068228, A040117, A068231, A068232, A068233, A068234, A068235.
Sequence in context: A030549 A017605 A126194 * A323594 A071696 A216530
Adjacent sequences: A068226 A068227 A068228 * A068230 A068231 A068232


KEYWORD

easy,nonn


AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002


EXTENSIONS

Edited by Dean Hickerson, Feb 27 2002


STATUS

approved



