The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068204 Let (x_n, y_n) be n-th solution to the Pell equation x^2 = 14*y^2 + 1. Sequence gives {y_n}. 3
 0, 4, 120, 3596, 107760, 3229204, 96768360, 2899821596, 86897879520, 2604036564004, 78034199040600, 2338421934653996, 70074623840579280, 2099900293282724404, 62926934174641152840, 1885708124945951860796 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Tanya Khovanova, Recursive Sequences H. W. Lenstra Jr., Solving the Pell Equation, Notices of the AMS, Vol.49, No.2, Feb. 2002, p.182-192. Index entries for linear recurrences with constant coefficients, signature (30,-1). FORMULA x_n + y_n*sqrt(14) = (x_1 + y_1*sqrt(14))^n. From Vladeta Jovovic, Mar 25 2002: (Start) a(n) = (2+15/28*sqrt(14))*(-1/(-15-4*sqrt(14)))^n/(-15-4*sqrt(14))+(-15/28*sqrt(14)+2)*(-1/(-15+4*sqrt(14)))^n/(-15+4*sqrt(14)). Recurrence: a(n) = 30*a(n-1)-a(n-2). G.f.: 4*x/(1-30*x+x^2). (End) MAPLE Digits := 1000: q := seq(floor(evalf(((15+4*sqrt(14))^n-(15-4*sqrt(14))^n)/28*sqrt(14))+0.1), n=1..30); MATHEMATICA LinearRecurrence[{30, -1}, {0, 4}, 16] (* Ray Chandler, Aug 11 2015 *) CROSSREFS Cf. A068203. Sequence in context: A240397 A347425 A002702 * A203033 A307935 A001332 Adjacent sequences:  A068201 A068202 A068203 * A068205 A068206 A068207 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 24 2002 EXTENSIONS More terms from Sascha Kurz, Mar 25 2002 More terms from Vladeta Jovovic, Mar 25 2002 Initial term 0 added by N. J. A. Sloane, Jul 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 05:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)