

A067993


Consider the sequence of ratios min(t(n1)/t(n), t(n)/t(n1)), n=2,3,4,..., where the t(n) are the terms of A067992. Let m be the smallest integer such that all fractions 1/n, 2/n, ..., (n1)/n have appeared when we reach A067992(m); this sequence gives the values of m; set a(n)=0 if some fraction i/n never appears.


0



1, 2, 4, 6, 18, 10, 20, 32, 38, 42, 44, 64, 104, 110, 118, 134, 144, 148, 264, 252, 266, 270, 272, 412, 418, 432, 438, 442, 444, 498, 530, 586, 712, 720, 722, 730, 744, 1014, 1020, 1024, 1026, 1042, 1154, 1158, 1160, 1172, 1174, 1178, 1516, 1482
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

Since A067992 begins 1,2,3,1,4,3,..., each of 1/4, 2/4= 1/2 and 3/4 have occurred by the time A067992(6)=3 is reached. Thus a(4)=6.


CROSSREFS

Cf. A067992.
Sequence in context: A076660 A046441 A192335 * A074131 A309282 A019464
Adjacent sequences: A067990 A067991 A067992 * A067994 A067995 A067996


KEYWORD

nonn


AUTHOR

John W. Layman, Feb 06 2002


STATUS

approved



