login
A067926
a(n)=phi(n^2+1)/n if (n^2+1) is composite and phi(n^2+1)==0 (mod n).
1
6, 25, 48, 60, 98, 150, 192, 304, 336, 896, 990, 800, 1248, 1232, 1210, 1105, 1798, 2448, 2790, 4032, 5166, 5095, 7488, 8925, 9798, 8484, 12540, 12528, 14448, 14112, 15994, 12950, 19998, 21312, 21222, 24198, 12288, 35768, 26560, 33792, 46620
OFFSET
1,1
COMMENTS
If n^2+1 is prime, trivially phi(n^2+1)/n=n.
LINKS
MATHEMATICA
cep[n_]:=Module[{c=n^2+1, ep}, ep=EulerPhi[c]; If[CompositeQ[c] && Mod[ ep, n] == 0, ep/n, Nothing]]; Array[cep, 47000] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 25 2021 *)
CROSSREFS
Cf. A066820.
Sequence in context: A079606 A372750 A184852 * A165217 A320422 A075224
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Feb 22 2002
STATUS
approved