Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Nov 22 2020 17:53:26
%S 2,2,3,11,14,27,28,66,212,231,552,2842,3774,6038,6784,10950,32948,
%T 78591,97875,98342,123569,139837,159698,1102838,3256476,20329622,
%U 34385124,60999878,82669919,85820365,389915995,4274338879,18907353107,62875944378,74931184173
%N Engel expansion of sin(1).
%e sin(1) = 0.84147... = A049469 has the Engel expansion 1/2 + 1/(2*2) + 1/(2*2*3) + ...
%t EngelExp[A_,n_]:=Join[Array[1&,Floor[A]],First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]],Expand[ #[[1]]#[[2]]-1]}&,{Ceiling[1/(A-Floor[A])],A-Floor[A]},n-1]]; EngelExp[N[Sin[1],6! ],50] (* _Vladimir Joseph Stephan Orlovsky_, Jun 13 2009 *)
%o (PARI) : s=sin(1); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );
%Y See A006784 for explanation of Engel expansions.
%Y Cf. A049469, A084651, A084652.
%K easy,nonn
%O 1,1
%A _Benoit Cloitre_, Mar 03 2002
%E a(1) inserted by Hauke Worpel (hw1(AT)email.com), Jun 01 2003
%E Edited by _N. J. A. Sloane_, Nov 01 2008 at the suggestion of _R. J. Mathar_