login
A067904
Primes of the form floor((3/2)^k).
5
2, 3, 5, 7, 11, 17, 4987, 7481, 180693856682317883, 4630985912862061063, 75677449184722757264165738713, 1910944005427272291238064043761449, 366425537175409658704814112327931286021
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E19.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..23
MATHEMATICA
f[n_]:=Floor[(3/2)^n]; lst={}; Do[p=f[n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 02 2009 *)
Select[Floor[(3/2)^Range[300]], PrimeQ] (* Harvey P. Dale, Dec 28 2014 *)
PROG
(PARI) v=[]; for(k=2, 5700, if(ispseudoprime(t=floor((3/2)^k)), v=concat(v, t))); v \\ Charles R Greathouse IV, Feb 15 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 03 2002
STATUS
approved