login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067889 Primes sandwiched between two numbers having same number of divisors. 13
7, 19, 41, 103, 137, 199, 307, 349, 491, 739, 823, 919, 1013, 1061, 1193, 1277, 1289, 1409, 1433, 1447, 1481, 1543, 1609, 1667, 1721, 1747, 2153, 2357, 2441, 2617, 2683, 2777, 3259, 3319, 3463, 3581, 3593, 3769, 3797, 3911, 3943, 4013, 4217, 4423, 4457 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes p such that tau(p+1)=tau(p-1) where tau(k)=A000005(k).

These are the primes in sequence A067888 of numbers n such that tau(n+1)=tau(n-1). - M. F. Hasler, Aug 06 2015

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

FORMULA

a(n) seems curiously to be asymptotic to 25*n*Log(n)

EXAMPLE

7 is a member as 6 and 8 both have 4 divisors; 19 is a member as 18 and 20 both have 6 divisors each.

MAPLE

with(numtheory):j := 0:for i from 1 to 10000 do b := ithprime(i): if nops(divisors(b-1))=nops(divisors(b+1)) then j := j+1:a[j] := b:fi:od:seq(a[k], k=1..j);

MATHEMATICA

Prime[ Select[ Range[ 700 ], Length[ Divisors[ Prime[ #1 ] - 1 ]] == Length[ Divisors[ Prime[ #1 ] + 1 ]] & ]]

PROG

(PARI) is_A067889(p)=numdiv(p-1)==numdiv(p+1)&&isprime(p) \\ M. F. Hasler, Jul 31 2015

CROSSREFS

Cf. A067891 (analog with sigma).

Sequence in context: A269428 A097240 A097241 * A190821 A100620 A002177

Adjacent sequences:  A067886 A067887 A067888 * A067890 A067891 A067892

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Mar 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 26 04:39 EDT 2017. Contains 288752 sequences.