login
A067870
Numbers k such that k and 3^k end with the same digit.
2
7, 13, 27, 33, 47, 53, 67, 73, 87, 93, 107, 113, 127, 133, 147, 153, 167, 173, 187, 193, 207, 213, 227, 233, 247, 253, 267, 273, 287, 293, 307, 313, 327, 333, 347, 353, 367, 373, 387, 393, 407, 413, 427, 433, 447, 453, 467, 473, 487, 493, 507, 513, 527, 533
OFFSET
1,1
COMMENTS
Also numbers k such that k^k ends with 3. - Bruno Berselli, Dec 11 2018
Numbers congruent to {7, 13} mod 20. - Amiram Eldar, Feb 27 2023
FORMULA
a(2*n+1) = 20*n-13, a(2*n) = 20*n-7.
a(n) = 20*(n-1)-a(n-1) for n>1, a(1)=7. - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Apr 06 2020: (Start)
G.f.: x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)).
a(n) = -5 - 2*(-1)^n + 10*n for n>0.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023
EXAMPLE
3^13 = 1594323 hence 13 is in the sequence.
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {7, 13, 27}, 50] (* Amiram Eldar, Feb 27 2023 *)
PROG
(PARI) a(n) = (5*(2*n-1)*(-1)^n - 2)*(-1)^n; \\ Jinyuan Wang, Apr 06 2020
(PARI) Vec(x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Apr 06 2020
CROSSREFS
Sequence in context: A205541 A072579 A337433 * A147258 A146718 A146646
KEYWORD
nonn,base,easy
AUTHOR
Benoit Cloitre, Mar 07 2002
STATUS
approved