|
|
A067844
|
|
Numbers k such that k and 2^k end with the same digit.
|
|
4
|
|
|
14, 16, 34, 36, 54, 56, 74, 76, 94, 96, 114, 116, 134, 136, 154, 156, 174, 176, 194, 196, 214, 216, 234, 236, 254, 256, 274, 276, 294, 296, 314, 316, 334, 336, 354, 356, 374, 376, 394, 396, 414, 416, 434, 436, 454, 456, 474, 476, 494, 496, 514, 516, 534, 536
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also numbers k such that k and (2^(2*h+1))^k (for n>=0) end with the same digit. - Bruno Berselli, Dec 13 2018
|
|
LINKS
|
Table of n, a(n) for n=1..54.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
|
|
FORMULA
|
From Colin Barker, Dec 01 2012: (Start)
G.f.: 2*x*(2*x^2 + x + 7)/((x - 1)^2*(x + 1)).
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n - 4*(-1)^n. (End)
|
|
EXAMPLE
|
2^36 = 68719476736 hence 36 is in the sequence.
|
|
PROG
|
(PARI) isok(n) = (2^n - n) % 10 == 0; \\ Michel Marcus, Nov 23 2013
|
|
CROSSREFS
|
Cf. A064541.
Sequence in context: A175887 A305885 A224402 * A015877 A192290 A152010
Adjacent sequences: A067841 A067842 A067843 * A067845 A067846 A067847
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Benoit Cloitre, Mar 07 2002
|
|
EXTENSIONS
|
Example corrected by Michel Marcus, Nov 23 2013
|
|
STATUS
|
approved
|
|
|
|