

A067824


a(1) = 1; for n > 1, a(n) = 1 + Sum_{0 < d < n, dn} a(d).


41



1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 16, 2, 6, 6, 16, 2, 16, 2, 16, 6, 6, 2, 40, 4, 6, 8, 16, 2, 26, 2, 32, 6, 6, 6, 52, 2, 6, 6, 40, 2, 26, 2, 16, 16, 6, 2, 96, 4, 16, 6, 16, 2, 40, 6, 40, 6, 6, 2, 88, 2, 6, 16, 64, 6, 26, 2, 16, 6, 26, 2, 152, 2, 6, 16, 16, 6, 26, 2, 96, 16, 6, 2, 88, 6, 6, 6, 40, 2, 88, 6, 16, 6, 6, 6, 224, 2, 16, 16, 52
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

By a result of Karhumaki and Lifshits, this is also the number of polynomials p(x) with coefficients in {0,1} that divide x^n1 and such that (x^n1)/ {(x1)p(x)} has all coefficients in {0,1}.
a(p^k) = 2^k for primes p; a(n) = n iff n = A122408(k) for some k.  Reinhard Zumkeller, Sep 03 2006
The number of tiles of a discrete interval of length n (an interval of Z).  Eric H. Rivals (rivals(AT)lirmm.fr), Mar 13 2007
Bodini and Rivals proved this is the number of tiles of a discrete interval of length n and also is the number (A107067) of polynomials p(x) with coefficients in {0,1} that divide x^n1 and such that (x^n1)/ {(x1)p(x)} has all coefficients in {0,1} (Bodini, Rivals, 2006). This structure of such tiles is also known as Krasner's factorization (Krasner and Ranulak, 1937). The proof also gives an algorithm to recognize if a set is a tile in optimal time and in this case, to compute the smallest interval it can tile (Bodini, Rivals, 2006).  Eric H. Rivals (rivals(AT)lirmm.fr), Mar 13 2007
Number of lonechildavoiding rooted achiral (or generalized Bethe) trees with positive integer leaves summing to n, where a rooted tree is lonechildavoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. For example, the a(6) = 6 trees are 6, (111111), (222), ((11)(11)(11)), (33), ((111)(111)).  Gus Wiseman, Jul 13 2018. Updated Aug 22 2020.
From Gus Wiseman, Aug 20 2020: (Start)
Also the number of strict chains of divisors starting with n. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12 are:
1 2 4 6 8 12
2/1 4/1 6/1 8/1 12/1
4/2 6/2 8/2 12/2
4/2/1 6/3 8/4 12/3
6/2/1 8/2/1 12/4
6/3/1 8/4/1 12/6
8/4/2 12/2/1
8/4/2/1 12/3/1
12/4/1
12/4/2
12/6/1
12/6/2
12/6/3
12/4/2/1
12/6/2/1
12/6/3/1
(End)


REFERENCES

Olivier Bodini and Eric Rivals. Tiling an Interval of the Discrete Line. In M. Lewenstein and G. Valiente, editors, Proc. of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture Notes in Computer Science, pages 117128. Springer Verlag, 2006.
G. Hajos. Sur le probleme de factorisation des groupes cycliques. Acta Math. Acad. Sci. Hung., 1:189195, 1950.
Juhani Karhumaki, Yury Lifshits and Wojciech Rytter, Tiling Periodicity, in Combinatorial Pattern Matching, Lecture Notes in Computer Science, Volume 4580/2007, SpringerVerlag.


LINKS

R. Zumkeller, Table = of n, a(n) for n = 1..10000
Olivier Bodini and Eric Rivals, Tiling an Interval of the Discrete Line
Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. See Table 1 p. 8.
J. Karhumaki and Y. Lifshits, Tiling periodicity.
M. Krasner and B. Ranulak, Sur une propriété des polynômes de la division du cercle, Comptes Rendus Académie des Sciences Paris, 240:397399, 1937.
Eric H. Rivals, Tiling
Index entries for sequences computed from exponents in factorization of n


FORMULA

a(n) = 2*A074206(n), n>1.  Vladeta Jovovic, Jul 03 2005
a(n) = Sum_{dn} A002033(d  1).  Gus Wiseman, Jul 13 2018
Dirichlet g.f.: zeta(s) / (2  zeta(s)).  Álvar Ibeas, Dec 30 2018
G.f. A(x) satisfies: A(x) = x/(1  x) + Sum_{k>=2} A(x^k).  Ilya Gutkovskiy, May 18 2019


EXAMPLE

a(12) = 1 + a(6) + a(4) + a(3) + a(2) + a(1)
= 1+(1+a(3)+a(2)+a(1))+(1+a(2)+a(1))+(1+a(1))+(1+a(1))+(1)
= 1+(1+(1+a(1))+(1+a(1))+1)+(1+(1+a(1))+1)+(1+1)+(1+1)+(1)
= 1+(1+(1+1)+(1+1)+1)+(1+(1+1)+1)+(1+1)+(1+1)+(1)
= 1 + 6 + 4 + 2 + 2 + 1 = 16.


MATHEMATICA

a[1]=1; a[n_] := a[n] = 1+Sum[If[Mod[n, d]==0, a[d], 0], {d, 1, n1}]; Array[a, 100] (* JeanFrançois Alcover, Apr 28 2011 *)


PROG

(Haskell)
a067824 n = 1 + sum (map a067824 [d  d < [1..n1], mod n d == 0])
 Reinhard Zumkeller, Oct 13 2011
(PARI) A=vector(100); A[1]=1; for(n=2, #A, A[n]=1+sumdiv(n, d, A[d])); A \\ Charles R Greathouse IV, Nov 20 2012


CROSSREFS

Cf. A000005, A001678, A003238, A107067, A107748, A167865, A316782.
A001055 counts factorizations.
A008480 counts maximal chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A253249 counts nonempty chains of divisors.
A337070 counts chains of divisors starting with A006939(n).
A337071 counts chains of divisors starting with n!.
A337256 counts chains of divisors.
Cf. A001221, A001222, A002033, A124010, A337074, A337105.
Sequence in context: A071364 A278237 A328707 * A107067 A331580 A320389
Adjacent sequences: A067821 A067822 A067823 * A067825 A067826 A067827


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Feb 08 2002


EXTENSIONS

Entry revised by N. J. A. Sloane, Aug 27 2006


STATUS

approved



