OFFSET
1,1
COMMENTS
For every m>1 sigma(m)^2 > sigma(m^2).
From Robert Israel, Jun 20 2018: (Start)
Numbers with prime factorization Product_j p_j^(e_j) such that Product_j (p_j^(e_j+1)-1)^2/((p_j^(2*e_j+1)-1)*(p_j-1)) > 3.
If h is a member then so are all multiples of h.
The first member that is squarefree is 7420738134810 = A002110(12).
(End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2];
mul((t[1]^(t[2]+1)-1)^2/(t[1]^(2*t[2]+1)-1)/(t[1]-1), t = F) > 3
end proc:
select(filter, [$1..10^4]); # Robert Israel, Jun 20 2018
MATHEMATICA
filterQ[n_] := Module[{F = FactorInteger[n]}, If[n == 1, Return[False]]; Product[{p, e} = pe; (p^(e+1)-1)^2/((p^(2e+1)-1)(p-1)), {pe, F}] > 3];
Select[Range[10^4], filterQ] (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
PROG
(PARI) isok(k) = sigma(k)^2 > 3*sigma(k^2); \\ Michel Marcus, Apr 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 07 2002
STATUS
approved