The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067807 Numbers n such that sigma(n)^2 > 2*sigma(n^2). 2
 24, 36, 40, 48, 60, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 156, 160, 168, 176, 180, 192, 200, 204, 208, 210, 216, 224, 228, 240, 252, 264, 270, 276, 280, 288, 300, 312, 320, 324, 336, 348, 352, 360, 372, 378, 384, 392, 396, 400, 408, 416, 420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For every n>1 sigma(n)^2 > sigma(n^2). Lim_{n->inf} a(n)/n appears to exist and is near 8.0; e.g., a(124094) = 1000000. - Paul D. Hanna, Sep 22 2011 We also have a(12438441) = 10^8, a(124240921) = 10^9, and a(1242729194) = 10^10. - Giovanni Resta, Jun 15 2018 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..1000 EXAMPLE The limit a(n)/n seems to be near 8.0:         n     a(n)    a(n)/n   ------- --------  ----------    124094  1000000  8.05840...    248310  2000000  8.05444...    372503  3000000  8.05362...    496826  4000000  8.05110...    621163  5000000  8.04941...    745602  6000000  8.04718...    870189  7000000  8.04422...    994799  8000000  8.04182...   1119336  9000000  8.04048...   1243884 10000000  8.03933... MATHEMATICA Select[Range[500], DivisorSigma[1, #]^2>2DivisorSigma[1, #^2]&]  (* Harvey P. Dale, Mar 30 2011 *) PROG (PARI) {for(n=1, 8000, if(2*sigma(n^2)-sigma(n)^2 < 0, print1(n, ", ")))} \\ Paul D. Hanna, Sep 22 2011 CROSSREFS Cf. A195735, A065764. Sequence in context: A112064 A090440 A091192 * A224907 A292352 A307342 Adjacent sequences:  A067804 A067805 A067806 * A067808 A067809 A067810 KEYWORD nonn AUTHOR Benoit Cloitre, Feb 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 09:39 EST 2020. Contains 332011 sequences. (Running on oeis4.)