login
Order of linear Heyting semi-lattice on n points.
4

%I #13 Jan 05 2024 00:12:17

%S 1,2,18,370386,143436460933743129632865858558642

%N Order of linear Heyting semi-lattice on n points.

%C The next term is too large to include.

%H P. J. Freyd, <a href="http://www.math.upenn.edu/~pjf/Heyting.pdf">On the size of Heyting Semi-Lattices and Linear Heyting Algebras</a>

%F a(0)=1; for n>0, a(n) = Product_{r=0..n-1} (1+a(r))^binomial(n, r).

%p A067765 := proc(n) option remember; if n=0 then 1 else mul((1+A067765(r))^binomial(n,r),r=0..n-1); fi; end;

%K nonn

%O 0,2

%A Peter Freyd (pjf(AT)saul.cis.upenn.edu), Feb 07 2002