login
A067744
Number of terms yielding particularly small errors in a numerical integration of exp((cos(x)-1)/(cos(x)+1)) having non-monotonic sub-geometric convergence.
0
2, 4, 7, 11, 16, 20, 26, 31, 37, 43, 50, 56, 64, 71, 79, 86, 95, 103, 112, 120, 129, 139, 148, 158, 168, 178, 188, 199, 209, 220, 231, 243, 254, 266, 277, 289, 301, 314, 326, 338, 351, 364, 377, 390, 404, 417, 431, 444, 458, 472, 487, 501, 515, 530, 545, 560
OFFSET
2,1
LINKS
J. A. C. Weideman, Numerical Integration of Periodic Functions: A Few Examples, Amer. Math. Monthly, 109 (2002), 30-32.
FORMULA
a(n) = round(((2*Pi/(3^(3/2)))*((6*n-5)/6))^(3/2)).
EXAMPLE
a(2)=2 since 7*sqrt(7)*Pi^(3/2) / (27 3^(3/4)) = 1.6755877...
MATHEMATICA
Table[Round[((2 Pi/(3^(3/2))) ((6 n - 5)/6))^(3/2)], {n, 2, 57}] (* Michael De Vlieger, Sep 29 2017 *)
PROG
(PARI) a(n) = round(((2*Pi/(3^(3/2)))*((6*n-5)/6))^(3/2)); \\ Michel Marcus, Sep 29 2017
CROSSREFS
Sequence in context: A299251 A238485 A316264 * A307601 A194215 A025718
KEYWORD
easy,nonn
AUTHOR
Marc LeBrun, Jan 29 2002
STATUS
approved