%I
%S 0,1,0,2,1,2,3,2,3,2,4,3,4,3,4,5,4,5,4,5,4,6,5,6,5,6,5,6,7,6,7,6,7,6,
%T 7,6,8,7,8,7,8,7,8,7,8,9,8,9,8,9,8,9,8,9,8,10,9,10,9,10,9,10,9,10,9,
%U 10,11,10,11,10,11,10,11,10,11,10,11,10,12,11,12,11,12,11,12,11,12,11
%N Maximum number of distinct parts in a selfconjugate partition of n, or 0 if n=2.
%C There are no selfconjugate partitions of 2, so we set a(2)=0.
%F a(n) = r  (s mod 2), where n = r(r+1)/2 + s with 0 <= s <= r; i.e. r = floor((sqrt(8n+1)1)/2).
%t r[n_] := Floor[(Sqrt[8n+1]1)/2]; s[n_] := nr[n](r[n]+1)/2; a[n_] := r[n]Mod[s[n], 2]
%Y Cf. A000700, A067694.
%K easy,nonn
%O 0,4
%A _Naohiro Nomoto_, Feb 05 2002
%E Edited by _Dean Hickerson_, Feb 15 2002
