This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067659 Number of partitions of n into distinct parts such that number of parts is odd. 27
 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Ramanujan theta functions: phi(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Joerg Arndt, Matters Computational (The Fxtbook), end of section 16.4.2 "Partitions into distinct parts", pp.348ff Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function q_o(n). Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA For g.f. see under A067661. (A000009(n)-A010815(n))/2. - Vladeta Jovovic, Feb 24 2002 Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006 G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014] a(n) = A067661(n) + A010815(n). - Andrey Zabolotskiy, Apr 12 2017 MAPLE b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,       `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014 MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *) CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *) PROG (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */ (PARI) N=66;  q='q+O('q^N);  S=1+2*sqrtint(N); gf=sum(n=1, S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) ); concat( [0], Vec(gf) )  /* Joerg Arndt, Oct 20 2012 */ (PARI) N=66;  q='q+O('q^N);  S=1+sqrtint(N); gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) ); concat( [0], Vec(gf) )  \\ Joerg Arndt, Apr 01 2014 CROSSREFS Cf. A067661 (even number of parts). Sequence in context: A237757 A027197 A137793 * A261772 A153156 A017852 Adjacent sequences:  A067656 A067657 A067658 * A067660 A067661 A067662 KEYWORD easy,nonn AUTHOR Naohiro Nomoto, Feb 23 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 20:23 EDT 2018. Contains 313927 sequences. (Running on oeis4.)