This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067595 Number of partitions of n into distinct Lucas parts (A000032). 25
 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 4, 6, 5, 5, 5, 6, 4, 4, 6, 5, 5, 5, 6, 4, 4, 4, 5, 4, 4, 7, 6, 6, 6, 8, 5, 5, 7, 6, 6, 6, 8, 6, 6, 6, 7, 5, 5, 8, 6, 6, 6, 7, 4, 4, 5, 5, 5, 5, 8, 7, 7, 7, 9, 6, 6, 9, 8, 8, 8, 10, 7, 7, 7, 8, 6, 6, 10, 8, 8, 8, 10, 6, 6, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..15127 FORMULA G.f.: B(x) * (1 + x^2) where B(x) is the g.f. of A003263. [Joerg Arndt, Jul 14 2013] MATHEMATICA n1 = 10; n2 = LucasL[n1]; (1 + x^2)*Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *) PROG (PARI) L(n) = fibonacci(n+1) + fibonacci(n-1); N = 66;  x = 'x + O('x^N); gf = prod(n=0, 11, 1 + x^L(n) ); \\gf = prod(n=1, 11, 1 + x^L(n) ) * (1+x^2); \\ same g.f. Vec(gf) \\ Joerg Arndt, Jul 14 2013 CROSSREFS Sequence in context: A266547 A127992 A169989 * A184721 A134868 A237259 Adjacent sequences:  A067592 A067593 A067594 * A067596 A067597 A067598 KEYWORD easy,nonn,look AUTHOR Naohiro Nomoto, Jan 31 2002 EXTENSIONS Corrected a(0), Joerg Arndt, Jul 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 07:30 EDT 2018. Contains 315308 sequences. (Running on oeis4.)