This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067593 Number of partitions of n into Lucas parts (A000032). 3
 1, 1, 2, 3, 5, 6, 9, 12, 16, 20, 26, 33, 41, 50, 62, 75, 90, 107, 129, 151, 178, 208, 244, 281, 326, 375, 431, 491, 561, 638, 723, 816, 922, 1037, 1163, 1302, 1458, 1624, 1808, 2009, 2231, 2467, 2729, 3012, 3321, 3651, 4014, 4406, 4828, 5282, 5777, 6308, 6877, 7491, 8155, 8862, 9622, 10438, 11316, 12247, 13249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 1/((1-x^2)*prod(i>=1, 1-x^(fibonacci(i-1)+fibonacci(i+1)) ) ). - Emeric Deutsch, Mar 23 2005 G.f.: prod(n>=0, 1 - q^A000032(n) ). [Joerg Arndt, Mar 26 2014] EXAMPLE a(5)=6 because we have 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+1+1+1. PROG (PARI) N=66; q='q+O('q^N); L(n) = fibonacci(n+1) + fibonacci(n-1); gf = 1; k=0; while( L(k) <= N, gf*=(1-q^L(k)); k+=1 ); gf = 1/gf; Vec( gf ) /* Joerg Arndt, Mar 26 2014 */ CROSSREFS Sequence in context: A212864 A026317 A008768 * A084993 A046966 A225973 Adjacent sequences:  A067590 A067591 A067592 * A067594 A067595 A067596 KEYWORD easy,nonn AUTHOR Naohiro Nomoto, Jan 31 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.