This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067514 Number of distinct primes of the form floor(n/k) for 1<=k<=n. 4
 0, 1, 1, 1, 2, 2, 3, 1, 2, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 5, 6, 2, 3, 4, 4, 4, 5, 4, 5, 3, 4, 5, 6, 4, 5, 5, 6, 4, 5, 4, 5, 5, 5, 6, 7, 3, 4, 4, 5, 6, 7, 5, 6, 5, 6, 7, 8, 4, 5, 5, 5, 4, 5, 6, 7, 7, 8, 7, 8, 4, 5, 5, 5, 5, 6, 7, 8, 6, 6, 7, 8, 4, 5, 6, 7, 7, 8, 5, 6, 7, 8, 9, 10, 6, 7, 5, 6, 5, 6, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Randell Heyman, Cardinality of a floor function, arXiv:1905.00533 [math.NT], 2019. FORMULA a(n) = A001221(A010786(n)). - Enrique Pérez Herrero, Feb 26 2012 EXAMPLE a(10)=3 as floor(10/k) for k = 1 to 10 is 10,5,3,2,2,1,1,1,1,1, respectively; the 3 primes are 5,3,2. MATHEMATICA a[n_] := Length[Union[Select[Table[Floor[n/i], {i, 1, n}], PrimeQ]]] Table[PrimeNu[Product[Floor[n/k], {k, 1, n}]], {n, 1, 100}] (* G. C. Greubel, May 08 2017 *) PROG (PARI) a(n) = #select(x->isprime(x), Set(vector(n, k, n\k))); \\ Michel Marcus, May 04 2019 CROSSREFS Cf. A068050. Cf. A055086 (number of distinct integers with same form). - Michel Marcus, May 04 2019 Sequence in context: A181648 A182910 A055460 * A115323 A089282 A308640 Adjacent sequences:  A067511 A067512 A067513 * A067515 A067516 A067517 KEYWORD easy,nonn AUTHOR Amarnath Murthy, Feb 12 2002 EXTENSIONS Edited by Dean Hickerson, Feb 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)