This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067364 a(n)=p-n!^4, where p is the smallest prime > n!^4+1. 4

%I

%S 2,3,5,5,7,29,19,29,181,19,31,173,79,43,379,61,101,127,101,83,37,29,

%T 271,233,109,233,293,1039,137,241,173,197,613,1933,277,71,503,449,

%U 1667,53,67,163,179,211,53,613,1171,1069,359,199,839,433,1523,463,677

%N a(n)=p-n!^4, where p is the smallest prime > n!^4+1.

%C The first 102 terms are primes. Are all terms prime? For n!^i, with 0<i<6, it looks like the terms are prime, too (see references). But for n!^6: a(28)=1189=29*41.

%C The first 1865 terms are primes. - _Dana Jacobsen_, May 13 2015

%H Dana Jacobsen, <a href="/A067364/b067364.txt">Table of n, a(n) for n = 1..1865</a>

%H Cyril Banderier, <a href="http://algo.inria.fr/banderier/Computations/prime_factorial.html">Fortunate Numbers</a>

%t a[n_] := For[i=2, True, i++, If[PrimeQ[n!^4+i], Return[i]]]

%o (MuPAD) for n from 1 to 50 do f := n!^4:a := nextprime(f+2)-f:print(a) end_for

%o (PARI) for(n=1, 500, f=n!^4; print1(nextprime(f+2)-f, ", ")) \\ _Dana Jacobsen_, May 13 2015

%o (Perl) use ntheory ":all"; use Math::GMP qw/:constant/; for my \$n (1..500) { my \$f=factorial(\$n)**4; say "\$n ", next_prime(\$f+1)-\$f; } # _Dana Jacobsen_, May 13 2015

%Y Cf. A037153, A037153, A005235, A067362, A067363, A067365.

%K nonn

%O 1,1

%A Frank Buss (fb(AT)frank-buss.de), Jan 19 2002

%E Edited by _Dean Hickerson_, Mar 02 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 19:44 EDT 2019. Contains 323597 sequences. (Running on oeis4.)