This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067360 a(n) = 17^n sin(2n arctan(1/4)) or numerator of tan(2n arctan(1/4)). 4
 8, 240, 4888, 77280, 905768, 4839120, -116593352, -4896306240, -113193708472, -1980778750800, -26710380775592, -228866364286560, 853309115549288, 91741652745294480, 2505643247965090168, 48655959795562600320, 735547895204966951048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that A067360(n), A067361(n) and 17^n are primitive Pythagorean triples with hypotenuse 17^n. REFERENCES Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433. LINKS J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273. E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27. Steven R. Finch, Plouffe's Constant [Broken link] Steven R. Finch, Plouffe's Constant [From the Wayback machine] Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3. FORMULA a(n) = 17^n sin(2n arctan(1/4)). A recursive formula for T(n) = tan(2n arctan(1/4)) is T(n+1)=(8/15+T(n))/(1-8/15*T(n)). Unsigned a(n) is the absolute value of numerator of T(n). Conjectures from Colin Barker, Jul 25 2017: (Start) G.f.: 8*x / (1 - 30*x + 289*x^2). a(n) = i*((15 - 8*i)^n - (15 + 8*i)^n)/2 where i=sqrt(-1). a(n) = 30*a(n-1) - 289*a(n-2) for n>2. (End) MAPLE a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(numer(a[n])), n=1..40); # a[n]=tan(2n arctan(1/4)) MATHEMATICA Table[Tan[2n ArcTan[1/4]] // TrigToExp // Simplify // Numerator, {n, 1, 17} ] (* Jean-François Alcover, Jul 25 2017 *) CROSSREFS Cf. A067361 (17^n cos(2n arctan(1/4))). Cf. A066770, A066771, A067358, A067359, A020888, A014498, A020892. Sequence in context: A222688 A254927 A221466 * A221770 A007060 A319851 Adjacent sequences:  A067357 A067358 A067359 * A067361 A067362 A067363 KEYWORD sign,easy,frac,changed AUTHOR Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Jan 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 26 09:52 EDT 2019. Contains 322472 sequences. (Running on oeis4.)