login
A067304
Generalized Catalan triangle A067298 with row reversion.
6
1, 2, 1, 9, 5, 4, 64, 36, 32, 28, 584, 328, 300, 284, 256, 6144, 3440, 3184, 3072, 2960, 2704, 70576, 39408, 36704, 35680, 34896, 33872, 31168, 859520, 478912, 447744, 436928, 429760, 422592, 411776
OFFSET
0,2
COMMENTS
Identity for each row n >= 1: a(n,m) + a(n,n-m+1) = A067297(n+1) (convolution of generalized Catalan numbers) for every m = 1..floor((n+1)/2). E.g., a(2k+1,k+1) = A067297(2*(k+1))/2.
The first column sequences (diagonals of A067298) are: A067297(n), A067305-8 for m=0..4.
FORMULA
a(n, m) = A067298(n, n-m), n >= m >= 0, otherwise 0.
G.f. for column m >= 1 (without leading zeros): (2^(2*ceiling(m/2))*p(m, y)*(y^3)/(1+y)^4, where y=y(x) := c(4*x), with c(x) g.f. of A000108 (Catalan) and the row polynomials p(n, y) := Sum_{k=0..n} A067329(n, k)*y^k, n >= 1. For m=0: ((y*(3+y))^2)/(1+y)^4 with y=y(x) := c(4*x) (see A067297).
EXAMPLE
{1}; {2,1}; {9,5,4}; {64,36,32,28}; ...; n=3: 64 = 36+28 = 32+32.
CROSSREFS
Cf. A067302 (row sums), A067323 (corresponding triangle for ordinary Catalan numbers).
Sequence in context: A177972 A011136 A361146 * A103876 A133174 A155545
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Feb 05 2002
STATUS
approved