login
A067140
Primes p beginning consecutive prime-difference pattern as follows: p, (10, 2, 10, 2, 10), p+34.
5
4219, 21577, 342037, 534637, 698239, 754099, 810367, 819229, 1081699, 1171957, 1382167, 1460077, 1498789, 1614637, 2158567, 2213389, 2228509, 2523139, 2664049, 2833309, 3056959, 3073999, 3098497, 3308497, 3522307, 3605857
OFFSET
1,1
EXAMPLE
First term a(1)=p(578)=4219; it is followed by 4229, 4231, 4241, 4243, 4253=p(583) primes, where the 5 corresponding consecutive differences equal {10, 2, 10, 2, 10}. Analogous case: see A022008.
MATHEMATICA
First /@ Select[Partition[Prime@ Range@ 258000, 6, 1], Differences[#] == {10, 2, 10, 2, 10} &] (* Giovanni Resta, Nov 14 2019 *)
CROSSREFS
Sequence in context: A250903 A250947 A291136 * A283725 A109488 A245316
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 02 2002
STATUS
approved