login
A067119
a(n) = floor[X/Y] where X = concatenation of first n even numbers in increasing order and Y = n-th triangular number.
2
2, 8, 41, 246, 16454, 1175286, 88146471, 6855836706, 548466936480, 44874567530214, 3739547294184576, 316423232584848746, 27121991364415606839, 2350572584916019259453, 205675101180151685202190
OFFSET
1,1
LINKS
EXAMPLE
a(4) = floor[2468/(1+2+3+4)] = floor[246.8] = 246.
MAPLE
for i from 1 to 33 do n := 2*i:c := n:n := n-2:while(n>0) do g := floor(log(c+1)/log(10)):c := c+10^(g+1)*n:n := n-2:end do:a[i] := floor(2*c/i/(i+1)):end do:q := seq(a[j], j=1..33);
MATHEMATICA
Module[{nn=20}, Table[Floor[FromDigits[Flatten[IntegerDigits/@Range[2, 2n, 2]]]/((n(n+1))/2)], {n, nn}]] (* Harvey P. Dale, Oct 03 2019 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Amarnath Murthy, Jan 08 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 23 2002
Edited by Charles R Greathouse IV, Apr 27 2010
STATUS
approved