login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067090 Floor(X/Y) where X = concatenation of (2n), (2n-1), ... down to n+1 and Y = concatenation of 1,2,3,... up to n. 9
2, 3, 5, 7, 8, 981, 114462, 13082645, 1471900839, 1635537203, 1799173568, 1962809933, 2126446298, 2290082663, 2453719028, 2617355393, 2780991758, 2944628123, 3108264488, 3271900853, 3435537218, 3599173583, 3762809948 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..22.

EXAMPLE

a(4) = floor(8765/1234) = 7.

a(6) = floor(121110987/123456) = floor(981.00527313374805598755832037325) = 981.

MATHEMATICA

f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2n - k + 1]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 25} ]

Table[Floor[FromDigits[Flatten[IntegerDigits/@(Range[2n, n+1, -1])]]/FromDigits[Flatten[IntegerDigits/@(Range[n])]]], {n, 25}] (* Harvey P. Dale, Jul 24 2011 *)

CROSSREFS

Cf. A067088, A067089.

Sequence in context: A105404 A238378 A075012 * A284173 A276227 A274698

Adjacent sequences:  A067087 A067088 A067089 * A067091 A067092 A067093

KEYWORD

easy,base,nonn

AUTHOR

Amarnath Murthy, Jan 07 2002

EXTENSIONS

More terms from Robert G. Wilson v, Jan 09 2002

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 00:39 EST 2019. Contains 329815 sequences. (Running on oeis4.)