login
A067048
a(n) = lcm(n, n+1, n+2, n+3, n+4) / 60.
3
1, 1, 7, 14, 42, 42, 462, 66, 429, 1001, 1001, 364, 6188, 1428, 3876, 3876, 6783, 4389, 33649, 3542, 17710, 32890, 26910, 8190, 118755, 23751, 56637, 50344, 79112, 46376, 324632, 31416, 145299, 250971, 191919, 54834, 749398, 141778, 320866, 271502, 407253
OFFSET
1,3
LINKS
Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3 (Spring 2001), pp. 307-308.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
From Gary Detlefs Apr 14 2011 and Apr 18 2011: (Start)
a(n) = (n+4)!*gcd(n-1,3)/(360*(n-1)!*gcd(n,4))
a(n) = (n+4)!*(5-4*cos((2*n+1)*Pi/3))/(1080*(n-1)!*(2+(-1)^n+cos(n*Pi/2)))
a(n) = (n+4)!*gcd(n-1,6)/(180*(n-1)!*2^((2*cos(n*Pi/2)+9+(-1)^n)/4)), n>1. (End)
120 <= n*(n+1)*(n+2)*(n+3)*(n+4)/a(n) <= 1440. - Charles R Greathouse IV, Sep 19 2012
Sum_{n>=1} 1/a(n) = 80 - 40*log(sqrt(3)+2)/sqrt(3) - 490*log(2)/3 + 60*log(3). - Amiram Eldar, Sep 29 2022
EXAMPLE
a(6) = 42 as lcm(6,7,8,9,10)/60 = 2520/60 = 42.
MAPLE
seq(ilcm(n, n+1, n+2, n+3, n+4)/60, n=1..100); # Robert Israel, Feb 07 2016
MATHEMATICA
Table[LCM @@ Range[n, n + 4]/60, {n, 1, 50}] (* Amiram Eldar, Sep 29 2022 *)
PROG
(PARI) { for (n=1, 1000, write("b067048.txt", n, " ", lcm(lcm(lcm(n, n+1), lcm(n+2, n+3)), n+4)/60) ) } \\ Harry J. Smith, May 01 2010
CROSSREFS
Sequence in context: A055780 A161814 A333594 * A189046 A098328 A062098
KEYWORD
nonn,easy,less
AUTHOR
Amarnath Murthy, Dec 30 2001
STATUS
approved