The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067048 a(n) = lcm(n, n+1, n+2, n+3, n+4) / 60. 3
 1, 1, 7, 14, 42, 42, 462, 66, 429, 1001, 1001, 364, 6188, 1428, 3876, 3876, 6783, 4389, 33649, 3542, 17710, 32890, 26910, 8190, 118755, 23751, 56637, 50344, 79112, 46376, 324632, 31416, 145299, 250971, 191919, 54834, 749398, 141778, 320866, 271502, 407253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3,Spring 2001. LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1). FORMULA From Gary Detlefs Apr 14 2011 and Apr 18 2011: (Start) a(n) = (n+4)!*gcd(n-1,3)/(360*(n-1)!*gcd(n,4)) a(n) = (n+4)!*(5-4*cos((2*n+1)*Pi/3))/(1080*(n-1)!*(2+(-1)^n+cos(n*Pi/2))) a(n) = (n+4)!*gcd(n-1,6)/(180*(n-1)!*2^((2*cos(n*Pi/2)+9+(-1)^n)/4)), n>1. (End) 120 <= n*(n+1)*(n+2)*(n+3)*(n+4)/a(n) <= 1440. - Charles R Greathouse IV, Sep 19 2012 EXAMPLE a(6) = 42 as lcm(6,7,8,9,10)/60 = 2520/60 = 42. MAPLE seq(ilcm(n, n+1, n+2, n+3, n+4)/60, n=1..100); # Robert Israel, Feb 07 2016 PROG (PARI) { for (n=1, 1000, write("b067048.txt", n, " ", lcm(lcm(lcm(n, n+1), lcm(n+2, n+3)), n+4)/60) ) } \\ Harry J. Smith, May 01 2010 CROSSREFS Cf. A067046, A067047. Sequence in context: A055780 A161814 A333594 * A189046 A098328 A062098 Adjacent sequences:  A067045 A067046 A067047 * A067049 A067050 A067051 KEYWORD nonn,easy,less AUTHOR Amarnath Murthy, Dec 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 01:16 EDT 2020. Contains 334858 sequences. (Running on oeis4.)