login
Totient of A061026(n) divided by n.
6

%I #33 Apr 26 2021 17:25:40

%S 1,1,2,1,2,1,4,1,2,1,2,1,4,2,2,1,6,1,10,1,2,1,2,1,4,2,2,1,2,1,10,1,2,

%T 3,2,1,4,5,2,1,2,1,4,1,4,1,6,1,4,2,2,1,2,1,2,1,4,1,12,1,6,5,2,1,2,1,4,

%U 2,2,1,8,1,4,2,2,3,6,1,4,1,2,1,2,1,12,2,4,1,2,2,6,1,4,3,2,1,4,2,2,1

%N Totient of A061026(n) divided by n.

%H Zak Seidov, <a href="/A067005/b067005.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A000010(A061026(n))/n.

%e n = 24: a(24) = 1 = phi(A061026(24))/24 = phi(35)/24 = 24/24;

%e n = 85: a(85) = 12 = phi(A061026(85))/85 = 1020/85.

%t Table[m = 1; While[! Divisible[Set[k, EulerPhi@ m], n], m++]; k/n, {n, 100}] (* _Michael De Vlieger_, Mar 18 2017 *)

%o (PARI) for(n=1,100, s=1; while((e=eulerphi(s))%n>0, s++); print1(e/n ", ")); \\ _Zak Seidov_, Feb 22 2014

%o (Python)

%o from sympy.ntheory import totient

%o def k(n):

%o m=1

%o while totient(m)%n: m+=1

%o return m

%o print([totient(k(n))//n for n in range(1, 101)]) # _Indranil Ghosh_, Mar 18 2017

%Y Cf. A000010, A061026, A066674, A066675, A066676, A066677, A066678.

%K nonn

%O 1,3

%A _Labos Elemer_, Dec 22 2001