This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066967 Total sum of odd parts in all partitions of n. 9
 1, 2, 7, 10, 23, 36, 65, 94, 160, 230, 356, 502, 743, 1030, 1480, 2006, 2797, 3760, 5120, 6780, 9092, 11902, 15701, 20350, 26508, 34036, 43860, 55822, 71215, 89988, 113792, 142724, 179137, 223230, 278183, 344602, 426687, 525616, 647085, 792950 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A206435. - Omar E. Pol, Mar 17 2012 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz) FORMULA Sum_{k=1..n} b(k)*numbpart(n-k), where b(k)=A000593(k)=sum of odd divisors of k. a(n) = sum(k*A113685(n,k), k=0..n). - Emeric Deutsch, Feb 19 2006 G.f.: sum((2i-1)x^(2i-1)/(1-x^(2i-1)), i=1..infinity)/product(1-x^j, j=1..infinity). - Emeric Deutsch, Feb 19 2006 a(n) = A066186(n) - A066966(n). - Omar E. Pol, Mar 10 2012 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018 EXAMPLE a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the odd parts is (3+1)+(1+1)+(1+1+1+1) = 10. MAPLE g:=sum((2*i-1)*x^(2*i-1)/(1-x^(2*i-1)), i=1..50)/product(1-x^j, j=1..50): gser:=series(g, x=0, 50): seq(coeff(gser, x^n), n=1..47); # Emeric Deutsch, Feb 19 2006 b:= proc(n, i) option remember; local f, g;       if n=0 or i=1 then [1, n]     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));          [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]*i]       fi     end: a:= n-> b(n, n)[2]: seq (a(n), n=1..50); # Alois P. Heinz, Mar 22 2012 MATHEMATICA max = 50; g = Sum[(2*i-1)*x^(2*i-1)/(1-x^(2*i-1)), {i, 1, max}]/Product[1-x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *) Map[Total[Select[Flatten[IntegerPartitions[#]], OddQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *) CROSSREFS Cf. A000041, A000593, A066897, A066898, A113685, A206435. Sequence in context: A023855 A191832 A066964 * A222450 A032007 A091295 Adjacent sequences:  A066964 A066965 A066966 * A066968 A066969 A066970 KEYWORD nonn AUTHOR Vladeta Jovovic, Jan 26 2002 EXTENSIONS More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)