This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066947 Number of elements of order 2 in GL(2,Z_n). 1
 3, 13, 27, 31, 55, 57, 175, 109, 127, 133, 391, 183, 231, 447, 607, 307, 439, 381, 895, 811, 535, 553, 2463, 751, 735, 973, 1623, 871, 1791, 993, 2335, 1875, 1231, 1855, 3079, 1407, 1527, 2575, 5631, 1723, 3247, 1893, 3751, 3519, 2215, 2257, 8511, 2745 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS Alec Mihailovs, Problem 16 Solution Alec Mihailovs, Abstract Algebra with Maple Alec Mihailovs, Chapter 5. Cyclic Groups FORMULA If n = 2^m*p^a...q^b where p, ..., q are the odd prime divisors of n, then a(n)=c(m)*(p^{2a}+p^{2a-1}+2)...(q^{2b}+q^{2b-1}+2) - 1 where c(0) = 1, c(1) = 4, c(2) = 28 and c(m) = 9*4^{m-1}+ 32 for m > 2. The integer function f(n) = a(n)+1 is multiplicative, i.e. f(m*n)=f(m)*f(n) for coprime m and n. - Alec Mihailovs (alec(AT)mihailovs.com), Mar 24 2002 EXAMPLE E.g. a(3000) = (a(8)+1)(a(3)+1)(a(125)+1)-1=(9*4^2+2)*(3^2+3+2)*(5^6+5^5+2)-1 = 46204927 because 3000=2^3*3*5^3. MAPLE Ord2inGL2 := proc(n::posint) local i, j, m, c; if n=1 then return 0 end if; m := ifactors(n)[2]; c := 1; j := 1; if (m[1, 1]=2) then j := 2; if m[1, 2]=1 then c := 4 elif m[1, 2]=2 then c := 28 else c := 9*4^(m[1, 2]-1)+32 end if end if; c := c*mul((m[i, 1]+1)*m[i, 1]^(2*m[i, 2]-1)+2, i=j..nops(m))-1 end; MATHEMATICA a[n_] := (c[0] = 1; c[1] = 4; c[2] = 28; c[k_] := 9*4^(k-1) + 32; fi = FactorInteger[n]; m = (s = Cases[fi, {2, _}]; If[s == {}, 0, s[[1, 2]]]); p = If[m == 0, fi, Rest[fi]]; p1 = p[[All, 1]]; p2 = p[[All, 2]]; c[m]*Times @@ (p1^(2p2) + p1^(2p2-1) + 2) - 1); (* From Jean-François Alcover, May 19 2011, after Maple prog. *) CROSSREFS Sequence in context: A120074 A056706 A052454 * A031011 A099062 A196014 Adjacent sequences:  A066944 A066945 A066946 * A066948 A066949 A066950 KEYWORD nice,easy,nonn AUTHOR Alec Mihailovs (alec(AT)mihailovs.com), Jan 24 2002 and Mar 24, 2002 EXTENSIONS More terms from Alec Mihailovs (alec(AT)mihailovs.com), Mar 24 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .