login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066918 a(n) = least natural number k such that f(k) begins a maximal zigzag of length n in the prime gaps function f(x) = p(x+1)-p(x), where p(x) denotes the x-th prime. (Cf. A066485.) 2
13, 17, 9, 4, 41, 30, 293, 166, 484, 796, 134, 12209, 1646, 467, 4673, 763, 1573, 7279, 37989, 153772, 102051, 377198, 593191, 41552, 677313, 473395, 557448, 5536093, 1643927, 22986338, 1877982, 14184432, 14828672, 23278807, 45383008, 82020263 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A zigzag of a function f(n) is a run of consecutive strict local extrema.

LINKS

Table of n, a(n) for n=1..36.

EXAMPLE

f(11),f(12),...,f(15) are: 6, 4, 2, 4, 6. Note that a zigzag of length 1 occurs at f(13)=2. This is a maximal zigzag, since neither f(12)=4 nor f(14)=4 are local extrema of f. Also, a maximal zigzag of length 1 first occurs at f(13). Therefore a(1) = 13.

MATHEMATICA

f[n_] := Prime[n+1]-Prime[n]; e[n_] := (f[n]-f[n-1])(f[n]-f[n+1])>0; For[n=1, n<100, n++, a[n]=0]; For[k=4; l=0, True, k++, If[e[k], l++, If[a[l]===0, Print["a(", l, ")=", a[l]=k-l]]; l=0]]

CROSSREFS

Cf. A066485.

Sequence in context: A173632 A061060 A084307 * A164062 A338371 A117326

Adjacent sequences: A066915 A066916 A066917 * A066919 A066920 A066921

KEYWORD

nonn

AUTHOR

Joseph L. Pe, Jan 23 2002

EXTENSIONS

Edited by Dean Hickerson, Jun 26 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 22:27 EST 2023. Contains 359947 sequences. (Running on oeis4.)