%I #46 Apr 11 2018 04:45:25
%S 5,15,65,175,671,1105,2465,3439,6095,12209,14911,25345,34481,39775,
%T 51935,74465,102719,113521,150415,178991,194545,246559,285935,352529,
%U 456385,515201,546415,612575,647569,721505,1024255,1124111,1285745
%N Sum of the elements in any transversal of a prime(n) X prime(n) array containing the numbers from 1 to prime(n)^2 in standard order.
%C a(n) is the sum of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).
%H Robert Israel, <a href="/A066886/b066886.txt">Table of n, a(n) for n = 1..10000</a>
%H Carlos Rivera, <a href="http://www.primepuzzles.net/conjectures/conj_026.htm">The prime puzzles & problems connection, conjecture 26</a>, The Prime Puzzles and Problems Connection.
%F a(n) = prime(n)*(prime(n)^2+1)/2, where prime(n) is the n-th prime.
%F a(n) = A006003(prime(n)). - _Michel Marcus_, Apr 04 2018
%F a(n) = A006254(n-1)^4 - A005097(n-1)^4, for n>1. - _Dimitris Valianatos_, Apr 10 2018
%p map(t -> t*(t^2+1)/2, [seq(ithprime(i),i=1..100)]); # _Robert Israel_, Apr 04 2018
%t a[n_] := Prime[n] (Prime[n]^2 + 1)/2; Table[a[n], {n, 50}]
%o (PARI) apply(x->(x*(x^2+1)/2), primes(100)) \\ _Michel Marcus_, Apr 04 2018
%Y Cf. A005097, A006003, A006254, A066883, A066885.
%K easy,nonn
%O 1,1
%A _Enoch Haga_, Jan 22 2002
%E Edited by _Dean Hickerson_, Jun 08 2002