

A066856


Omega(n!+1), where omega is the number of distinct primes dividing n, A001221.


4



1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153digit composite is factored. a(104) = 4 and a(105) = 6.  Rick L. Shepherd, Jun 09 2003


LINKS

Table of n, a(n) for n=1..102.
Hisanori Mishima, Appendix 1. Factorization results for n!+1
Paul Leyland, Factors of n!+1 [Typo in URL corrected by R. J. Mathar, Nov 21 2008]
Hisanori Mishima, Bernoulli numbers (n = 2 to 114)


MATHEMATICA

Table[ Length[ FactorInteger[ n! + 1]], {n, 1, 15}]


PROG

(PARI) for(n=1, 64, print1(omega(n!+1), ", "))


CROSSREFS

Cf. A054990 (bigomega(n!+1)), A002981 (n!+1 is prime), A064237 (n!+1 divisible by a square), A084846 (mu(n!+1)).
Sequence in context: A059131 A059129 A081771 * A089280 A246960 A285200
Adjacent sequences: A066853 A066854 A066855 * A066857 A066858 A066859


KEYWORD

hard,nonn


AUTHOR

Robert G. Wilson v, Jan 21 2002


EXTENSIONS

More terms from Rick L. Shepherd, Jun 09 2003


STATUS

approved



