login
A066780
a(n) = Product_{k=1..n} sigma(k); sigma(k) is the sum of the positive divisors of n.
9
1, 3, 12, 84, 504, 6048, 48384, 725760, 9434880, 169827840, 2037934080, 57062154240, 798870159360, 19172883824640, 460149211791360, 14264625565532160, 256763260179578880, 10013767147003576320, 200275342940071526400, 8411564403483004108800
OFFSET
1,2
COMMENTS
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A007429(gcd(i,j)) for 1 <= i,j <= n. - Enrique Pérez Herrero, Aug 12 2011
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300 (terms 1..100 from Harry J. Smith).
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49
Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (20).
FORMULA
Lim_{n->infinity} (a(n)^(1/n)) / n = A345144 / exp(1) = 0.57447937538407152396420163967936309825692994713661226083669171312803511135... - Vaclav Kotesovec, Jun 09 2021
MAPLE
with(numtheory):seq(mul(sigma(k), k=1..n), n=1..26); # Zerinvary Lajos, Jan 11 2009
with(numtheory):a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=a[n-1]*sigma(n) od: seq(a[n], n=0..18); # Zerinvary Lajos, Mar 21 2009
MATHEMATICA
A066780[n_] := Product[DivisorSigma[1, i], {i, 1, n}]; Array[A066780, 20] (* Enrique Pérez Herrero, Aug 12 2011 *)
FoldList[Times, DivisorSigma[1, Range[20]]] (* Harvey P. Dale, Jan 29 2022 *)
PROG
(PARI) { p=1; for (n=1, 100, write("b066780.txt", n, " ", p*=sigma(n)) ) } \\ Harry J. Smith, Mar 25 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre and Leroy Quet, Jan 18 2002
STATUS
approved