The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066660 Number of divisors of 2n excluding 1. 5
 1, 2, 3, 3, 3, 5, 3, 4, 5, 5, 3, 7, 3, 5, 7, 5, 3, 8, 3, 7, 7, 5, 3, 9, 5, 5, 7, 7, 3, 11, 3, 6, 7, 5, 7, 11, 3, 5, 7, 9, 3, 11, 3, 7, 11, 5, 3, 11, 5, 8, 7, 7, 3, 11, 7, 9, 7, 5, 3, 15, 3, 5, 11, 7, 7, 11, 3, 7, 7, 11, 3, 14, 3, 5, 11, 7, 7, 11, 3, 11, 9, 5, 3, 15, 7, 5, 7, 9, 3, 17, 7, 7, 7, 5, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the number of integers of the form (n+k)/(n-k) for k=0,1,2,...,n-1. Inverse Moebius transform of A040001 (offset 1). The number of partitions of 2n into exactly two parts (2n-i,i) such that i divides (2n-i). - Wesley Ivan Hurt, Dec 22 2013 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Vaclav Kotesovec, Graph - the asymptotic ratio FORMULA a(n) = A069930(n) + 1. If n is an odd prime, then a(n)=3. Asymptotic formula: 1/n*Sum(i=1, n, a(i)) = C*log(n) + o(log(n)) with C=3/2. [corrected by Vaclav Kotesovec, Feb 13 2019] Also lim_{n -> infinity} card(i0} x^n(1 - x^(3n))/((1 - x^n)(1 - x^(2n))). a(n) = d(2n) - 1, where d(n) is the number of divisors of n (A000005). - Wesley Ivan Hurt, Dec 22 2013 a(n) = n - A234306(n). - Antti Karttunen, Dec 22 2013 a(n) = Sum_{i=1..n} floor(2*n/i) - floor((2*n-1)/i). - Wesley Ivan Hurt, Nov 15 2017 Sum_{k=1..n} a(k) ~ n/2 * (3*log(n) + log(2) + 6*gamma - 5), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 13 2019 EXAMPLE a(4)=3 because (4+0)/(4-0), (4+2)/(4-2), (4+3)/(4-3) are integers. MAPLE with(numtheory); A066660:=n->tau(2*n)-1; seq(A066660(n), n=1..100); # Wesley Ivan Hurt, Dec 22 2013 MATHEMATICA Table[DivisorSigma[0, 2 n] - 1, {n, 100}] (* Wesley Ivan Hurt, Dec 22 2013 *) PROG (PARI) a(n)=if(n<1, 0, sumdiv(n, d, (d>1)+d%2)) (PARI) {a(n)=if(n<1, 0, numdiv(2*n)-1)} /* Michael Somos, Sep 03 2006 */ (PARI) { for (n=1, 1000, write("b066660.txt", n, " ", numdiv(2*n) - 1) ) } \\ Harry J. Smith, Mar 16 2010 (Magma) [DivisorSigma(0, 2*n) -1: n in [1..100]]; // G. C. Greubel, Feb 13 2019 (Sage) [sigma(2*n, 0) -1 for n in (1..100)] # G. C. Greubel, Feb 13 2019 CROSSREFS Cf. A000005, A040001, A234306. Sequence in context: A197592 A103359 A020481 * A057957 A359507 A241686 Adjacent sequences: A066657 A066658 A066659 * A066661 A066662 A066663 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Jan 11 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 10:10 EST 2023. Contains 360115 sequences. (Running on oeis4.)