login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066639 Number of partitions of n with floor(n/2) parts. 1
0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 21, 22, 29, 30, 41, 42, 55, 56, 76, 77, 100, 101, 134, 135, 175, 176, 230, 231, 296, 297, 384, 385, 489, 490, 626, 627, 791, 792, 1001, 1002, 1254, 1255, 1574, 1575, 1957, 1958, 2435, 2436, 3009, 3010, 3717, 3718, 4564 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..57.

FORMULA

a(n)=A000041(ceiling(n/2))-1/2+(-1)^n/2 - Benoit Cloitre, Apr 28 2003

EXAMPLE

a(7)=4 as floor(7/2)=3 and the three-element partitions of 7 are (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2).

MAPLE

P := proc(n, k) option remember: if(k=1) then RETURN(1) elif(k<1 or n<1 or k>n) then RETURN(0) else RETURN(P(n-1, k-1)+P(n-k, k)) fi:end; seq(P(n, floor(n/2)), n=1..60);

P := proc(n, k) option remember: if(k<1 or n<1 or k>n) then RETURN(0) elif(k=1) then RETURN(1) else RETURN(P(n-1, k-1)+P(n-k, k)) fi:end; seq(P(n, floor(n/2)), n=1..60);

PROG

(PARI) a(n)=polcoeff(1/eta(x), ceil(n/2))-n%2

CROSSREFS

Sequence in context: A120161 A100665 A114095 * A141286 A165686 A025209

Adjacent sequences:  A066636 A066637 A066638 * A066640 A066641 A066642

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Dec 28 2001

EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003 and Apr 21 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 09:29 EST 2017. Contains 295115 sequences.