

A066634


Number of triangulations of the cyclic polytope C(n, n5).


0



5, 16, 42, 138, 357, 1233, 3278, 12589, 35789, 159613, 499900, 2677865, 9421400, 62226044
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

5,1


LINKS

Table of n, a(n) for n=5..18.
C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, Fiber polytopes for the projections between cyclic polytopes, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19  47.
M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n4), Discrete Comput. Geom., 27 (2002), 2948.
J. Rambau, TOPCOM.
J. Rambau, TOPCOM: Triangulations of Point Configurations and Oriented Matroids, Mathematical Software  ICMS 2002 (Cohen, Arjeh M. and Gao, XiaoShan and Takayama, Nobuki, eds.), World Scientific (2002), pp. 330340.
J. Rambau and F. Santos, The Baues problem for cyclic polytopes I, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 6583.


PROG

TOPCOM's command "cyclic 17 12  points2ntriangs v" yields, e.g., the number of triangulations of C(17, 12).


CROSSREFS

Cf. A066342, A028441.
Sequence in context: A002662 A143962 A321959 * A241794 A034358 A036888
Adjacent sequences: A066631 A066632 A066633 * A066635 A066636 A066637


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jan 09 2002


EXTENSIONS

New term for C(17,12) (computed by TOPCOM) added by Jörg Rambau, Jul 26 2011
New term for C(18,13) (computed by TOPCOM) added by Jörg Rambau, Aug 01 2011


STATUS

approved



