login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066634 Number of triangulations of the cyclic polytope C(n, n-5). 0
5, 16, 42, 138, 357, 1233, 3278, 12589, 35789, 159613, 499900, 2677865, 9421400, 62226044 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

LINKS

Table of n, a(n) for n=5..18.

C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, Fiber polytopes for the projections between cyclic polytopes, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19 - 47.

M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48.

J. Rambau, TOPCOM.

J. Rambau, TOPCOM: Triangulations of Point Configurations and Oriented Matroids, Mathematical Software - ICMS 2002 (Cohen, Arjeh M. and Gao, Xiao-Shan and Takayama, Nobuki, eds.), World Scientific (2002), pp. 330-340.

J. Rambau and F. Santos, The Baues problem for cyclic polytopes I, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 65-83.

PROG

TOPCOM's command "cyclic 17 12 | points2ntriangs -v" yields, e.g., the number of triangulations of C(17, 12).

CROSSREFS

Cf. A066342, A028441.

Sequence in context: A002662 A143962 A321959 * A241794 A034358 A036888

Adjacent sequences:  A066631 A066632 A066633 * A066635 A066636 A066637

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 09 2002

EXTENSIONS

New term for C(17,12) (computed by TOPCOM) added by Jörg Rambau, Jul 26 2011

New term for C(18,13) (computed by TOPCOM) added by Jörg Rambau, Aug 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 20:20 EDT 2019. Contains 326133 sequences. (Running on oeis4.)