login
A066624
Number of 1's in binary expansion of parts in all partitions of n.
3
0, 1, 3, 7, 13, 23, 41, 65, 102, 156, 234, 340, 495, 697, 982, 1359, 1864, 2523, 3408, 4536, 6022, 7918, 10365, 13457, 17423, 22380, 28666, 36498, 46318, 58466, 73617, 92221, 115236, 143402, 177984, 220086, 271524, 333810, 409490, 500804, 611149, 743728, 903296
OFFSET
0,3
LINKS
EXAMPLE
For n = 3: 11 = 10+1 = 1+1+1 [binary expansion of partitions of 3]. a(3) = (two 1's) + (two 1's) + (three 1's), so a(3) = 7.
MATHEMATICA
<< DiscreteMath`Combinatorica`; Table[Count[Flatten[IntegerDigits[Partitions[n], 2]], 1], {n, 0, 50}]
Table[Total[Flatten[IntegerDigits[#, 2]&/@IntegerPartitions[n]]], {n, 0, 50}] (* Harvey P. Dale, Mar 29 2022 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Naohiro Nomoto, Jan 09 2002
EXTENSIONS
More terms from Vladeta Jovovic and Robert G. Wilson v, Jan 11 2002
STATUS
approved