login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066613 Product of the nonzero digits = number of divisors. 2
1, 2, 14, 22, 24, 32, 42, 116, 122, 126, 141, 202, 211, 221, 222, 260, 280, 340, 402, 411, 440, 512, 620, 840, 1021, 1041, 1062, 1114, 1118, 1128, 1132, 1141, 1144, 1201, 1202, 1206, 1218, 1222, 1242, 1250, 1314, 1332, 1340, 1380, 1401, 1411, 1602, 1611 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)

EXAMPLE

24 is a term as there are 8 divisors of 24 = 2*4.

MATHEMATICA

f[n_] := Block[ {a = Sort[ IntegerDigits[n]] }, While[ First[a] == 0, a = Drop[a, 1]]; Return[ Apply[ Times, a]]]; Select[ Range[10^4], f[ # ] == Length[ Divisors[ # ]] & ]

pndQ[n_]:=Times@@Select[IntegerDigits[n], #!=0&]==DivisorSigma[0, n]; Select[Range[2000], pndQ] (* Harvey P. Dale, Oct 25 2016 *)

PROG

(PARI) ProdNzD(x)= { local(d, p=1); while (x>9, d=x%10; if (d, p*=d); x\=10); return(p*x) } { n=0; for (m=1, 10^10, if (ProdNzD(m) == numdiv(m), write("b066613.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Mar 12 2010

CROSSREFS

Cf. A074312.

Sequence in context: A280074 A086263 A073143 * A074312 A061426 A190045

Adjacent sequences:  A066610 A066611 A066612 * A066614 A066615 A066616

KEYWORD

nonn,base

AUTHOR

Amarnath Murthy, Dec 24 2001

EXTENSIONS

Corrected and extended by Jason Earls (zevi_35711(AT)yahoo.com) and Robert G. Wilson v, Dec 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 03:51 EST 2017. Contains 294912 sequences.