login
A066611
a(1) = 1; a(n) = remainder when n^n is divided by (n-1)^(n-1) for n > 1.
2
1, 0, 3, 13, 53, 2906, 30391, 306356, 1544521, 314487775, 5311670611, 71438659315, 8643791799805, 208502988236908, 4525624184096751, 55200677713457866, 15583522643116493073, 466115766638709659105
OFFSET
1,3
LINKS
EXAMPLE
a(5) = 53 as 5^5 = 3125 = (4^4)*12 + 53.
MATHEMATICA
Table[ Mod[ n^n, (n - 1)^(n - 1)], {n, 2, 20} ]
Join[{1}, Table[PowerMod[n, n, (n-1)^(n-1)], {n, 2, 20}]] (* Harvey P. Dale, Dec 14 2017 *)
PROG
(PARI) { for (n=1, 100, a=n^n % (n-1)^(n-1); if (n==1, a=1); write("b066611.txt", n, " ", a) ) } \\ Harry J. Smith, Mar 12 2010
CROSSREFS
Sequence in context: A367755 A121240 A065839 * A377082 A180933 A048514
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Dec 24 2001
EXTENSIONS
More terms from Robert G. Wilson v, Dec 26 2001
STATUS
approved