%I #15 Dec 05 2024 18:45:44
%S 1,2,4,8,16,14,28,38,67,80,43,86,127,164,94,152,178,248,298,362,337,
%T 332,385,446,451,398,499,602,574,698,703,794,805,854,1015,1040,1135,
%U 1226,1201,1286,1330,1400,1531,1640,1687,1754,1861,2102,2161,2450,2074
%N Sum of the digits in the n-th row of Pascal's triangle.
%H Harry J. Smith, <a href="/A066600/b066600.txt">Table of n, a(n) for n = 0..1000</a>
%e The 7th row in Pascal's triangle is 1, 7, 21, 35, 35, 21, 7, 1 and the sum of the digits is 38 hence a(7) = 38.
%t f[n_] := Block[{m = s = 0}, While[m < n + 1, s = s + Apply[ Plus, IntegerDigits[ Binomial[n, m]]]; m++ ]; Return[s]]; Table[ f[n], {n, 0, 50}]
%o (PARI) a(n)={vecsum([sumdigits(x) | x<-binomial(n)])} \\ _Harry J. Smith_, Mar 08 2010
%K base,easy,nonn
%O 0,2
%A _Amarnath Murthy_, Dec 22 2001
%E Corrected and extended by _Robert G. Wilson v_, Dec 28 2001
%E Offset changed from 1 to 0 by _Harry J. Smith_, Mar 08 2010