login
A066543
Number of spanning trees in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n).
0
782757789696, 5976745079881894723584, 29514790517935282585600000000000000, 95296975201657487970461602120230307486331043840000, 202142993853936783750487849288950496428731602354031286611374533246976
OFFSET
3,1
FORMULA
a(n) = 2^(3*n^2-1) * A212800(n). - Sean A. Irvine, Oct 25 2023
EXAMPLE
NumberOfSpanningTrees(L(C_3 x C_3)) = 782757789696
MATHEMATICA
NumberOfSpanningTrees[LineGraph[GraphProduct[Cycle[n], Cycle[n]]]] (* First load package DiscreteMath`Combinatorica` *)
CROSSREFS
Cf. A212800.
Sequence in context: A017531 A348204 A233806 * A323533 A233800 A162027
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Dean Hickerson, Jan 14 2002
a(7) from Sean A. Irvine, Oct 25 2023
STATUS
approved