login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066529 a(n) is the least index such that the least primitive root of the a(n)-th prime is n, or zero if no such prime exists. 5
1, 2, 4, 0, 9, 13, 20, 0, 0, 65, 117, 566, 88, 173, 85, 0, 64, 5426, 43, 10217, 80, 474, 326, 44110, 0, 1479, 0, 12443, 1842, 11662, 775, 0, 23559, 5029, 6461, 0, 3894, 5629, 15177, 105242, 14401, 182683, 9204, 7103, 5518399, 23888, 24092, 42304997, 0, 1455704, 27848, 12107, 14837, 205691645, 38451, 12102037, 39370, 28902, 57481, 56379, 90901, 53468, 5918705, 0, 732055, 1738826, 242495, 265666, 10523, 388487, 260680 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The corresponding primes are in A023048.

For n < 150, only a(108) is presently unknown. - Robert G. Wilson v, Jan 03 2006

LINKS

Table of n, a(n) for n=1..71.

Tomás Oliveira e Silva, Least prime primitive root of prime numbers

E. Weisstein, Primitive Roots

Index entries for primes by primitive root

FORMULA

a(n) = 0 iff n is a perfect power (A001597) > 1. - Robert G. Wilson v, Jan 03 2006

a(n) = min { k | A001918(k) = n } U {0} = A000720(A023048(n)) (or zero). - M. F. Hasler, Jun 01 2018

EXAMPLE

a(6) = 13 because Prime[13] = 41 is the least prime with least primitive root = 6

MATHEMATICA

big = Table[ p = Prime[ n ]; PrimitiveRoot[ p ], {n, 1, 1000000} ]; Flatten[ Table[ Position[ big, n, 1, 1 ]/.{}-> 0, {n, 79} ] ] (* First load package NumberTheory`NumberTheoryFunctions` *)

(* first load package *) << NumberTheory`NumberTheoryFunctions` (* then do *) t = Table[0, {100}]; Do[a = PrimitiveRoot@Prime@n; If[a < 101 && t[[a]] == 0, t[[a]] = n], {n, 10^6}]; t (* Robert G. Wilson v, Dec 15 2005 *)

CROSSREFS

Cf. A001918, A001122, A001123, A023048, A001597.

Sequence in context: A095059 A021419 A180192 * A052080 A261754 A073451

Adjacent sequences:  A066526 A066527 A066528 * A066530 A066531 A066532

KEYWORD

nonn

AUTHOR

Wouter Meeussen, Jan 06 2002

EXTENSIONS

Edited by Dean Hickerson, Jan 14 2002

Further terms from Robert G. Wilson v, Jan 03 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)