login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066527 Triangular numbers that for some k are also the sum of the first k primes. 5
10, 28, 133386, 4218060, 54047322253, 14756071005948636, 600605016143706003, 41181981873797476176, 240580227206205322973571, 1350027226921161196478736 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = A000217(i) = A007504(j) for appropriate i, j.

These are the 4, 7, 516, 2904, 328777, ... -th triangular numbers and are the sums of the first 3, 5, 217, 1065, 93448, ... prime numbers respectively.

a(7) is the sum of the first 240439822 primes. a(8) is the sum of the first 1894541497 primes. - Donovan Johnson, Nov 24 2008

a(9) is the sum of the first 132563927578 primes. a(10) is the sum of the first 309101198255 primes. a(11) > 6640510710493148698166596 (sum of first pi(2*10^13) primes). - Donovan Johnson, Aug 23 2010

LINKS

Table of n, a(n) for n=1..10.

EXAMPLE

a(2) = 28, as A000217(7) = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 = 2 + 3 + 5 + 7 + 11 = A007504(5).

MAPLE

a066527(m) = local(d, ds, p, ps); d=1; ds=1; p=2; ps=2; while(ds<m, if(ds==ps, print1(ds, ", "); d++; ds=ds+d; p++; p=nextprime(p); ps=ps+p, if(ds<ps, d++; ds=ds+d, p++; p=nextprime(p); ps=ps+p))) a066527(10^11)

MATHEMATICA

s = 0; Do[s = s + Prime[n]; t = Floor[ Sqrt[2*s]]; If[t*(t + 1) == 2s, Print[s]], {n, 1, 10^6} ]

Select[Accumulate[Prime[Range[5000000]]], IntegerQ[(Sqrt[1+8#]-1)/2]&] (* Harvey P. Dale, May 04 2013 *)

PROG

(Haskell)

a066527 n = a066527_list !! (n-1)

a066527_list = filter ((== 1) . a010054) a007504_list

-- Reinhard Zumkeller, Mar 23 2013

CROSSREFS

Cf. A010054.

Sequence in context: A219812 A185985 A239477 * A103423 A102542 A098751

Adjacent sequences:  A066524 A066525 A066526 * A066528 A066529 A066530

KEYWORD

nonn,nice,more

AUTHOR

Reinhard Zumkeller, Jan 06 2002

EXTENSIONS

One more term from Klaus Brockhaus and Robert G. Wilson v, Jan 07 2002

One more term from Philip Sung (philip_sung(AT)hotmail.com), Jan 25 2002

a(7)-a(8) from Donovan Johnson, Nov 24 2008

a(9)-a(10) from Donovan Johnson, Aug 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 05:35 EDT 2020. Contains 334712 sequences. (Running on oeis4.)