login
Number of orthogonal arrays OA(6,n,2,1).
0

%I #12 Mar 27 2024 11:16:41

%S 0,0,2880,109440,2753280,60249600,1249274880,25351280640,509998510080,

%T 10223941017600,204671339642880,4094969962659840,81911756682362880,

%U 1638334041381273600,32767472282735738880,655355778068620247040,13107166223775883591680,262143729787114723737600

%N Number of orthogonal arrays OA(6,n,2,1).

%H J.-Z. Zhang, Z.-S. You and Z.-L. Li, <a href="https://doi.org/10.1016/S0012-365X(01)00045-0">Enumeration of binary orthogonal arrays of strength 1</a>, Discrete Math., 239 (2000), 191-198.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (34,-336,1184,-1280).

%F a(n) = 2^n*(10^n-15*4^n+45*2^n-40).

%F G.f.: 2880*x^3*(4*x+1) / ((2*x-1)*(4*x-1)*(8*x-1)*(20*x-1)). - _Colin Barker_, Aug 01 2013

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, Dec 25 2001

%E More terms from _Colin Barker_, Aug 01 2013