%I #11 Jul 03 2017 16:06:04
%S 0,1,46,1347,32220,686661,13579914,254863751,4601440184,80635542921,
%T 1379999420134,23167187812555,382770785757588,6239740764495309,
%U 100556187294037314,1604514927998181135,25381661274646261616,398462715169752739601,6213273419843077690782
%N From expansion of Belyi function for cube.
%H Colin Barker, <a href="/A066403/b066403.txt">Table of n, a(n) for n = 0..850</a>
%H N. Magot and A. Zvonkin, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00266-6">Belyi functions for Archimedian solids</a>, Discrete Math., 217 (2000), 249-271.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (42,-591,2828,-591,42,-1).
%F The Belyi function is -108*(z^4+1)^4*z^4/(z^8-14*z^4+1)^3.
%F G.f.: x*(1+x)^4 / (1-14*x+x^2)^3. - _Colin Barker_, Jan 12 2016
%t LinearRecurrence[{42,-591,2828,-591,42,-1},{0,1,46,1347,32220,686661},30] (* _Harvey P. Dale_, Jul 03 2017 *)
%o (PARI) concat(0, Vec(x*(1+x)^4/(1-14*x+x^2)^3 + O(x^20))) \\ _Colin Barker_, Jan 12 2016
%Y Cf. A066405, A066402, A066404.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Dec 25 2001
%E Corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001