login
From expansion of Belyi function for cube.
4

%I #11 Jul 03 2017 16:06:04

%S 0,1,46,1347,32220,686661,13579914,254863751,4601440184,80635542921,

%T 1379999420134,23167187812555,382770785757588,6239740764495309,

%U 100556187294037314,1604514927998181135,25381661274646261616,398462715169752739601,6213273419843077690782

%N From expansion of Belyi function for cube.

%H Colin Barker, <a href="/A066403/b066403.txt">Table of n, a(n) for n = 0..850</a>

%H N. Magot and A. Zvonkin, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00266-6">Belyi functions for Archimedian solids</a>, Discrete Math., 217 (2000), 249-271.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (42,-591,2828,-591,42,-1).

%F The Belyi function is -108*(z^4+1)^4*z^4/(z^8-14*z^4+1)^3.

%F G.f.: x*(1+x)^4 / (1-14*x+x^2)^3. - _Colin Barker_, Jan 12 2016

%t LinearRecurrence[{42,-591,2828,-591,42,-1},{0,1,46,1347,32220,686661},30] (* _Harvey P. Dale_, Jul 03 2017 *)

%o (PARI) concat(0, Vec(x*(1+x)^4/(1-14*x+x^2)^3 + O(x^20))) \\ _Colin Barker_, Jan 12 2016

%Y Cf. A066405, A066402, A066404.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Dec 25 2001

%E Corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001