OFFSET
2,1
LINKS
Harry J. Smith, Table of n, a(n) for n = 2..200
M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48.
Index entries for linear recurrences with constant coefficients, signature (6, -13, 12, -4).
FORMULA
G.f.: x^2*(2-4*x+3*x^2-3*x^3)/((1-x)^2*(1-2*x)^2). [Colin Barker, Apr 20 2012]
a(2)=2, a(3)=8, a(4)=25, a(5)=67, a(n)=6*a(n-1)-13*a(n-2)+12*a(n-3)- 4*a(n-4). - Harvey P. Dale, Oct 23 2013
MATHEMATICA
Table[(3n+4)2^(n-3)-(2n-1), {n, 2, 30}] (* or *) LinearRecurrence[ {6, -13, 12, -4}, {2, 8, 25, 67}, 30] (* Harvey P. Dale, Oct 23 2013 *)
PROG
(PARI) { for (n=2, 200, write("b066374.txt", n, " ", (3*n + 4)*2^(n -3 ) - (2*n - 1)) ) } [Harry J. Smith, Feb 11 2010]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 04 2002
STATUS
approved